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1 Isogeometric model problem

For the sake of simplicity, we restrict ourselves to the following model problem.
Let Q = (0,1)¢ and assume f € L?() to be a given function. Find a function
u :  — R such that

—Au= fin Q, @:001139.
on

In variational form, this problem reads: find u € H'(Q) such that
a(u,v) := (Vu, Vo) r20) = (f,v)r2(0) Yo € HY(Q).

We obtain an isogeometric discretization of this problem by choosing a se-
quence of spline spaces V, C H'(Q), £ =0,1,..., and introducing the Galerkin
discretization: find u, € Vy such that

a(ug,w) = <f7 Ug> Yvg € Vp.

In the 1D setting, Vy is chosen as a spline space of some fixed degree p over
a uniform open knot vector consisting of ny = ng2‘ subintervals of length
hy == — = 1 2~ by uniform dyadic refinement. “Open” here refers to the fact
that the ﬁrst and last knots are repeated p + 1 times. All interior knots are
simple and thus the spline space has the maximum continuity, V, C C?~1(0,1).
Furthermore, the spaces are nested, i.e., Vo C Vy41. If we want to make explicit
mention of the spline degree, we write S, ¢ = V, for this uniformly refined spline
space.

In higher dimensions, the space V; is taken as the tensor product of 1D spline
spaces as just described. Whenever a basis for these spline spaces is needed, we
use the canonical basis of normalized B-splines or tensor products thereof. For
more details on splines, see, e.g., [1].

2 Description of the multigrid algorithm

Denoting the stiffness matrix on level ¢ by K,, the multigrid algorithm for

solving the discretized equation on grid level ¢ reads as follows. Starting from

an initial approximation tho), one iteration of the multigrid method to obtain

the next iterate le) is given by the following two steps:



e Smoothing procedure: For some fixed number v of smoothing steps, com-
pute

géo’m) = gg,o’m_l) + TLZl (ie — Ky géo’m_”) form=1,...,v, (1)

where QE,O’O) = g&o). The choice of the smoothing matrix Lé_1 and the

damping parameter 7 > 0 will be discussed below.

e (Coarse-grid correction:

— Compute the defect and restrict it to grid level /—1 using a restriction
matrix If_lz

o0 1 (1, K.
— Compute the update @17)1 by solving the coarse-grid problem
KeapM) =ri?). (2)

— Prolongate Bgl_)l to the grid level ¢ using a prolongation matrix I, 571
and add the result to the previous iterate:

1 0,v
w o= ™ 1 )

We denote by Ty = I—If_1 K[_ll IfflKg the action of the coarse-grid correction.

3 A robust smoother for IGA

Lemma 1. If the approximation property

ITewllz, <cllollx, — VoeR™,

and the smoothing property
K, <clL,

are satisfied with uniform constants ¢ which do not depend on £ or p, then the
two-grid algorithm converges with a rate which is robust in £ and p.

The construction of our smoother depends on first showing that the mass
matrix is a robust smoother in a large subspace of the spline space, and then
extending this smoother to the whole space by a low-rank correction.

In [2] it was shown that a robust inverse estimate holds for the following
large subspace of Sp,¢.

Definition 1. We denote by §p75 the space of allug € Sy, ¢ whose odd derivatives
of order less than p vanish at the boundary.



Theorem 1 ([2]). Let ¢ € Ny and p € N. Then
el mri0,1) < 2V3hy Huel L2 0.1y Yug € Sp .
Furthermore an approximation property holds in §p’g. Below, ﬁz denotes a

suitably chosen orthogonal projector into .S, ¢.

Theorem 2. Let ¢ € Ny and p € N. Then
llu = Teul| £2(0,1) < 2V2helul (0.1 Vu e H'(0,1).

The above results allow us to prove the assumptions of Lemma [1] for the
smoother L, := hZQMg in the subspace S,,. The following abstract result
allows us the extension to the entire space S,,. We drop subscripts here to
emphasize the abstract nature of the result.

Lemma 2. Assume that the smoother L satisfies the properties
|To|lr <cllvlx  YveS,
|ollx <clollr  VoeS,

I -l <ol Voes.

Then the modified smoother L := L+ (I—I1)TK (I —1I) satisfies the assumptions
of Lemma [1] robustly.

A slight generalization allows us the construction of a robust smoother for
the 1D case in the form

Ly :=h;2My + Kp := h2My + (I — )T K (I —T1}),

where IT] is now a suitably chosen orthogonal projector onto the space of “inner”
splines, that is, discarding the p left- and right-most B-spline basis functions.
The term K/ is then nothing but a Schur complement. In 2D, the smoother

h?ié & Ze — h%[?g ® [?g

can be shown to be robust by relying on the 1D results. The second term is
a low-rank correction and the smoother can be efficiently realized by means of
the Sherman-Morrison-Woodbury formula.

4 Experimental results
As a numerical example, we solve the Poisson equation

—Au=f inQ, u=g on 0f)

on the domain Q = (0,1)%, d = 1,2, where the right-hand side and boundary
conditions are chosen in accordance with the exact solution u(x) = H;l:l sin(mz;).



We perform a (tensor product) B-spline discretization using uniformly sized knot
spans and maximum-continuity splines for varying spline degrees p. We start
from a coarse discretization with only a single interval and perform ¢ uniform,
dyadic refinement steps to obtain a finer discretization.

We then set up a two-grid method as previously described with the proposed
smoothers and one pre- and post-smoothing steps, respectively.

We perform two-grid iteration until the Euclidean norm of the initial residual
is reduced by a factor of 10~8. The iteration numbers using different spline
degrees p as well as different refinement levels ¢ for the one-dimensional domain
are given in Table [I and those for the two-dimensional domain in Table[2] As
predicted by the theory, the iteration numbers remain uniformly bounded with
respect to the spline degree p as well as the refinement level.

D ‘ 1 2 3 4 6 8 10 12 14 16 18 20
¢=101{22 20 20 21 20 20 20 20 18 18 17 17
¢=11123 20 20 21 20 20 19 19 18 19 18 17
(=12 123 20 20 20 20 20 20 19 18 18 18 18

Table 1: Two-grid iteration numbers in 1D.

D ‘ 2 3 4 6 &8 10 11 12 13 14 15 16
{=5|8 8 75 76 72 70 71 70 68 69 69 66
{=6|8 8 7 75 72 70 70 69 68 68 67 65

Table 2: Two-grid iteration numbers in 2D.
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