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1 Isogeometric model problem

For the sake of simplicity, we restrict ourselves to the following model problem.
Let Ω = (0, 1)d and assume f ∈ L2(Ω) to be a given function. Find a function
u : Ω→ R such that

−∆u = f in Ω,
∂u

∂n
= 0 on ∂Ω.

In variational form, this problem reads: find u ∈ H1(Ω) such that

a(u, v) := (∇u,∇v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1(Ω).

We obtain an isogeometric discretization of this problem by choosing a se-
quence of spline spaces V` ⊂ H1(Ω), ` = 0, 1, . . ., and introducing the Galerkin
discretization: find u` ∈ V` such that

a(u`, v`) = 〈f, v`〉 ∀v` ∈ V`.

In the 1D setting, V` is chosen as a spline space of some fixed degree p over
a uniform, open knot vector consisting of n` = n02` subintervals of length
h` := 1

n`
= 1

n0
2−` by uniform dyadic refinement. “Open” here refers to the fact

that the first and last knots are repeated p + 1 times. All interior knots are
simple and thus the spline space has the maximum continuity, V` ⊂ Cp−1(0, 1).
Furthermore, the spaces are nested, i.e., V` ⊂ V`+1. If we want to make explicit
mention of the spline degree, we write Sp,` = V` for this uniformly refined spline
space.

In higher dimensions, the space V` is taken as the tensor product of 1D spline
spaces as just described. Whenever a basis for these spline spaces is needed, we
use the canonical basis of normalized B-splines or tensor products thereof. For
more details on splines, see, e.g., [1].

2 Description of the multigrid algorithm

Denoting the stiffness matrix on level ` by K`, the multigrid algorithm for
solving the discretized equation on grid level ` reads as follows. Starting from

an initial approximation u
(0)
` , one iteration of the multigrid method to obtain

the next iterate u
(1)
` is given by the following two steps:
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• Smoothing procedure: For some fixed number ν of smoothing steps, com-
pute

u
(0,m)
` := u

(0,m−1)
` + τL−1

`

(
f
`
−K` u

(0,m−1)
`

)
for m = 1, . . . , ν, (1)

where u
(0,0)
` := u

(0)
` . The choice of the smoothing matrix L−1

` and the
damping parameter τ > 0 will be discussed below.

• Coarse-grid correction:

– Compute the defect and restrict it to grid level `−1 using a restriction
matrix I`−1

` :

r
(1)
`−1 := I`−1

`

(
f
`
−K` u

(0,ν)
`

)
.

– Compute the update p
(1)
`−1 by solving the coarse-grid problem

K`−1 p
(1)
`−1

= r
(1)
`−1. (2)

– Prolongate p
(1)
`−1 to the grid level ` using a prolongation matrix I``−1

and add the result to the previous iterate:

u
(1)
` := u

(0,ν)
` + I``−1 p

(1)
`−1

.

We denote by T` = I−I``−1K
−1
`−1 I

`−1
` K` the action of the coarse-grid correction.

3 A robust smoother for IGA

Lemma 1. If the approximation property

‖T`v‖L`
≤ c‖v‖K`

∀v ∈ Rm` ,

and the smoothing property
K` ≤ cL`

are satisfied with uniform constants c which do not depend on ` or p, then the
two-grid algorithm converges with a rate which is robust in ` and p.

The construction of our smoother depends on first showing that the mass
matrix is a robust smoother in a large subspace of the spline space, and then
extending this smoother to the whole space by a low-rank correction.

In [2] it was shown that a robust inverse estimate holds for the following
large subspace of Sp,`.

Definition 1. We denote by S̃p,` the space of all u` ∈ Sp,` whose odd derivatives
of order less than p vanish at the boundary.
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Theorem 1 ([2]). Let ` ∈ N0 and p ∈ N. Then

|u`|H1(0,1) ≤ 2
√

3h−1
` ‖u`‖L2(0,1) ∀u` ∈ S̃p,`.

Furthermore an approximation property holds in S̃p,`. Below, Π̃` denotes a

suitably chosen orthogonal projector into S̃p,`.

Theorem 2. Let ` ∈ N0 and p ∈ N. Then

‖u− Π̃`u‖L2(0,1) ≤ 2
√

2h`|u|H1(0,1) ∀u ∈ H1(0, 1).

The above results allow us to prove the assumptions of Lemma 1 for the
smoother L` := h−2

` M` in the subspace S̃p,`. The following abstract result
allows us the extension to the entire space Sp,`. We drop subscripts here to
emphasize the abstract nature of the result.

Lemma 2. Assume that the smoother L satisfies the properties

‖Tv‖L ≤ c‖v‖K ∀v ∈ S,

‖ṽ‖K ≤ c‖ṽ‖L ∀ṽ ∈ S̃,

‖(I − Π̃)v‖L ≤ c‖v‖K ∀v ∈ S.

Then the modified smoother L̂ := L+(I−Π̃)TK(I−Π̃) satisfies the assumptions
of Lemma 1 robustly.

A slight generalization allows us the construction of a robust smoother for
the 1D case in the form

L̂` := h−2
` M` + K̃` := h−2

` M` + (I −ΠI
` )
TK(I − Π̃I

` ),

where ΠI
` is now a suitably chosen orthogonal projector onto the space of “inner”

splines, that is, discarding the p left- and right-most B-spline basis functions.
The term K̃` is then nothing but a Schur complement. In 2D, the smoother

h2
` L̂` ⊗ L̂` − h2

`K̃` ⊗ K̃`

can be shown to be robust by relying on the 1D results. The second term is
a low-rank correction and the smoother can be efficiently realized by means of
the Sherman-Morrison-Woodbury formula.

4 Experimental results

As a numerical example, we solve the Poisson equation

−∆u = f in Ω, u = g on ∂Ω

on the domain Ω = (0, 1)d, d = 1, 2, where the right-hand side and boundary

conditions are chosen in accordance with the exact solution u(x) =
∏d
j=1 sin(πxj).
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We perform a (tensor product) B-spline discretization using uniformly sized knot
spans and maximum-continuity splines for varying spline degrees p. We start
from a coarse discretization with only a single interval and perform ` uniform,
dyadic refinement steps to obtain a finer discretization.

We then set up a two-grid method as previously described with the proposed
smoothers and one pre- and post-smoothing steps, respectively.

We perform two-grid iteration until the Euclidean norm of the initial residual
is reduced by a factor of 10−8. The iteration numbers using different spline
degrees p as well as different refinement levels ` for the one-dimensional domain
are given in Table 1, and those for the two-dimensional domain in Table 2. As
predicted by the theory, the iteration numbers remain uniformly bounded with
respect to the spline degree p as well as the refinement level.

p 1 2 3 4 6 8 10 12 14 16 18 20
` = 10 22 20 20 21 20 20 20 20 18 18 17 17
` = 11 23 20 20 21 20 20 19 19 18 19 18 17
` = 12 23 20 20 20 20 20 20 19 18 18 18 18

Table 1: Two-grid iteration numbers in 1D.

p 2 3 4 6 8 10 11 12 13 14 15 16
` = 5 82 80 75 76 72 70 71 70 68 69 69 66
` = 6 83 87 76 75 72 70 70 69 68 68 67 65

Table 2: Two-grid iteration numbers in 2D.
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